PHYSICAL REVIEW E 73, 066608 (2006)

Stable stationary and quasiperiodic discrete vortex breathers with topological charge S=2
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We demonstrate the stability of a stationary vortex breather with vorticity S=2 in the two-dimensional
discrete nonlinear Schrodinger model for a square lattice and also discuss the effects of exciting internal sites
in a vortex ring. We also point out the fundamental difficulties of observing these solutions with current
experimental techniques. Instead, we argue that relevant initial conditions will lead to the formation of quasi-

periodic vortex breathers.
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Over the last decades much interest has been paid to the
concept of self-localization of solutions to nonlinear lattice
equations [1,2]. Generally employed as models of periodic
nonlinear systems that are abundant in nature, the equations
incorporate nonlinearity and coupling, or tunneling, between
adjacent sites of the lattice, two effects which, when in bal-
ance, lead to localization. The existence of intrinsic localized
modes (also known as discrete breathers or lattice solitons)
has been proven rigorously under very general conditions
[3,4], and experimental observations are numerous [5-14].
Recent experimental activity has to an increasing extent fo-
cused on two-dimensional systems—e.g., optically induced
nonlinear photonic lattices [15]. In contrast to excitations in
one spatial dimension, higher-dimensional localized modes
can carry angular momentum, which due to the discrete sym-
metry is generally not a conserved quantity, manifested as a
screw dislocation of the phase on a closed contour encircling
the excitation. In such a discrete vortex soliton the angular
momentum is proportional to the topological charge S, or
vorticity—i.e., the number of complete 27 twists of the
phase on the contour. In simulations of continuous models of
nonlinear periodic systems localized vortices have been
found, e.g., for a Bose-Einstein condensate trapped in an
optical potential [16,17] and optically induced waveguides in
a Kerr medium (cubic nonlinearity) [ 18] or a photorefractive
crystal (saturable nonlinearity) [19]. Also asymmetric vorti-
ces have been suggested [20].

A fruitful, and quite simple, approach to nonlinear peri-
odic systems is the use of Wannier function expansion to
reduce the system to a nonlinear lattice equation [21]. In the
tight-binding approximation of nearest-neighbor coupling the
generic equation that incorporates nonlinearity and coupling
at lowest order is the discrete nonlinear Schrodinger (DNLS)
equation, which in two dimensions for a square lattice reads

“aT 2
1\I,n,m = C("Pn—l,m + lPn+l,m + ‘Pn,m—l + \Pn,mH) + |‘I,n,m| \Pn,m’
(1

where W, ,, is a complex field quantity, the overdot repre-
sents differentiation with respect to time, and the constant C
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determines the strength of the intersite coupling. The rel-
evance of the DNLS model for physical systems is notice-
able in the large amount of research devoted to the equation
(see [22] for a review) and also in some phenomenological
predictions that have been experimentally verified in one-
dimensional systems [5,23,24]. In the context of Eq. (1), dis-
crete vortex solitons were computed in [25-27]. Of the fun-
damental vortices discovered only the S=1 and S=3 vortices
were found to be stable. The rigorous analysis made in [28]
of the persistence and stability of DNLS vortices with the
main excited sites orientated along a square contour in the
lattice substantiates these results. It has also been suggested
that the unstable S=2 vortex can be stabilized by an impurity
[29].

The restrictions set on the vorticity by the discrete lattice
symmetry are discussed in [30-32]. However, the vorticity in
these papers, defined as the phase twist belonging solely to
the plane-wave part of the angular Bloch mode connected to
the solution, is not necessarily equal to the overall vorticity
as defined here and in [26-28]. Therefore, the statement in
[30-32] that a lattice with a discrete point symmetry of order
n (the symmetry group is C, or C,, and n=4 for a square
lattice) cannot support vortices of charge larger than n/2 is
not a contradiction to the results in [27,28] and in the present
paper, but merely due to a lack of preciseness in definition.
The discrepancy is that the periodic part of the angular Bloch
mode may contribute any 27n multiple to the total phase
twist, where n is the symmetry order, in addition to the con-
tribution from the plane-wave part, without failing to fulfill
the symmetry condition set by the discrete point group. The
high-order (>n/2) vortices can be related to the vorticity of
the Bloch modes by a process somewhat analogous to a re-
duction from a periodic to a reduced zone scheme in solid-
state physics. In particular, a S=3 vortex in a square lattice
can be reduced to a Bloch mode consisting of a plane-wave
part with a phase twist of =27 and a periodic part with a
phase twist of +87—i.e., what would be referred to as a
vortex with charge —1 in [30-32]. Moreover, the statement
(not proven) in the same papers that there are no true vortices
with charge n/2 (n even) is incorrect as all possible solutions
are not taken into account. Examples can be found below and
in [26-28].

Experimentally, stable S=1 vortices have been observed
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in photonic lattices [33,34], whereas there is, to the best of
our knowledge, yet no observation of higher-order vortices
in periodic nonlinear systems. Recently the observation was
reported of necklacelike solitons, with actual charge $=0,
being formed from an initial condition with high vorticity
[35].

In this paper we study numerically the existence and sta-
bility of discrete vortex solitons of the DNLS equation (1)
different from the most fundamental previously obtained
[26,27]. We show that with respect to stability the orientation
of the excitations in the lattice is of importance, as well as
the effect of exciting internal sites in a vortex ring. Particu-
larly we report a stable S=2 stationary vortex, previously not
thought to exist, and show its persistence in dynamical simu-
lations. We stress that our stable S=2 vortex has a different
structure than the unstable S=2 solutions previously studied.
Moreover, we argue that trying to excite the vortex from an
experimentally relevant initial condition will lead to the cre-
ation of a stable quasiperiodic vortex breather.

Obtaining numerically exact solutions to Eq. (1) is much
simplified by its global phase invariance, since this permits a
gauge transformation of monochromatic time-periodic solu-
tions to a frame of reference where the solutions are station-
ary. Thus, taking ¥, (1) =, .6 reduces Eq. (1) to

- Al//n,m + C(lr/jn—l,m + l//n+l,m + I/’n,m—l + (//n,m+l)
+ |¢n,m|2¢n,m =0. (2)

In the anticontinuous limit (C=0) of Eq. (2) the system is
equivalent to a set of uncoupled anharmonic oscillators and
solutions are trivial. For each site we may take ,,,
{0, \Ae“"} with a € |-, 7], thus creating an arbitrary
configuration of excited and resting sites. However, the
choices of the relative phases are not arbitrary if the solution
is to persist up to some finite coupling [28,36]. A conse-
quence of the phase invariance of Eq. (1) is that the norm, or
excitation number, N=X, , N, ,,==, |V, .| is a conserved
quantity. This can be expressed in the form of a discrete
continuity equation

Kt Fim Bt B Fpa=0. )
where the norm current density is
u7f£n == 2C Im{wn‘m‘ynﬂ,m}

= 2CV'/V'n mNn+1 m Sin(0n+1 m= an m) > (4)

it v,,= \J\/',, e fm, and where jm is given by Eq. (4)
with the roles of n and m mterchanged Thus, for a stationary

solution, implying a constant intensity (J\/',,,m:O), Egs. (3)
and (4) impose a set of conditions on the relative phases of
the solution. Only trivial solutions subject to this constraint
may be numerically continued to nonzero coupling by
an iterative Newton method [37,38]. Further, the linear sta-
bility of the solutions can be examined by considering the
evolution of a small perturbation to the solution. Inserting
[+ €0m(t)]e A into Eq. (1) and keeping only first-order
terms in ¢,,, leads to a linear eigenvalue problem for the
growth rates of €,,,. Since the problem is infinitesimally
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symplectic, +\ and *\" will be simultaneous eigenvalues
and linear stability follows if all eigenvalues have zero real
part [39].

The most fundamental vortex mode with S=1 is obtained
by exciting four sites in a square configuration, with a rela-
tive phase difference of /2 between neighboring sites
[26,40]. If, without loss of generality, the frequency is fixed
at A=1, this solution will be stable for C <0.1512, while the
square configuration placed diagonally in the lattice with a
zero amplitude mediating site in the center will be stable for
C<0.1525 (see Table I). The calculations have been made
on a lattice, typically of size 21 X 21, but have been checked
for other sizes, with periodic boundary conditions. Also for
the higher-order vortices the diagonally aligned configura-
tions have a larger interval of stability than the configura-
tions aligned along the lattice, which are of the type classi-
fied and investigated in [28]. This may be expected because
of the larger distance between the excited sites, which means
that a stronger coupling is needed before any destabilizing
interactions come into play. In the large coupling limit the
system approaches the continuum two-dimensional nonlinear
Schrodinger equation where all solitons are unstable and it is
therefore expected that instabilities set in at increasing cou-
pling. Of the initially linearly stable configurations presented
in Table I, the transition to unstable solutions is always the
result of a pair of eigenvalues colliding with the band of
extended eigenmodes creating four complex eigenvalues off
the imaginary axis.

We especially note the stability of the S=2 vortex for
C<0.1348 (mode i in Table I), which as far as we know has
not been reported for any related systems. In [29] it was
shown how the unstable S=2 vortex (mode % in Table I) can
be stabilized by making the center site inert, but we would
like to stress that the stability of the vortex presented here is
not due to any impurities in the system. Further, though
larger in diameter the vortex still only incorporates eight
main excited sites as can be seen in Fig. 1. The stability has
also been checked in dynamical simulations where the exact
solution is used as an initial condition against a uniformly
distributed background noise. The simulations concur with
the results from the linear stability analysis. But even when
the solution is linearly unstable it can survive for tens of
internal breather oscillations before the instability develops
in simulations. However, this time will decrease as the cou-
pling increases and as a second and third quartet of eigen-
values with nonzero real part emerge at C=0.1563 and
C=0.1583, respectively. A further increase of the number of
excited sites for S=2 vortices seems to lead to unstable con-
figurations. Vortices on a square contour with 12 and 16 ex-
cited sites and 4 and 9 internal unexcited sites, respectively,
are unstable as shown in [28].

With an increasing radius of the vortex rings in the lattice
it is also interesting to investigate the effects of exciting the
internal sites, within the constraints set by Eq. (3) as dis-
cussed above. It is, e.g., possible to stabilize the large S=1
vortex (mode d in Table I) by exciting the center site (mode
e). A similar configuration for the higher-order vortex rings
will only give unstable excitations when continued beyond
the anticontinuous limit. In fact, no stable modes with inter-
nal sites excited have been found for S=2 and S=3, which is
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TABLE 1. Vorticity and phase configuration at the anticontinu-
ous limit C=0 of some stationary vortex breathers, where - is used
to denote unexcited sites. The interval of stability obtained from
continuation of the initial configurations is also shown.

N Phase configuration () Stable
a 1 0 —7/2 C<0.1512
/2 T
b 1 0 C<0.1525
7r/2 . —1r/2
T
c 1 /4 0 —-l4 No
/2 . —1r/2
3wld  w -3mwl4
d 1 0 No
/4 . —-1/4
/2 . . . —r/2
37/4 -37/4
T
e 1 0 C<0.1177
/4 . —-1l4
/2 . 0 —/2
3m7/4 -37/4
T
f 1 0 No
/4 0 —-1l4
/2 /2 —1/2 —1/2
3wl4d  w  -3uw/4
T
g 1 0 C<0.0610
/4 T —1/4
7r/2 —7r/2 . /2 —1r/2
37/4 0 -37/4
h 2 /2 0 —-7/2 No
T . T
-m/2 0 /2
i 2 0 C<0.1348
/2 . —1r/2
T T
—7r/2 . /2
0
j 3 37/4 0 37/4 C<0.0704
—7r/2 . /2
/4 T —1/4
k 3 0 C<0.1266
3m7/4 -37/4
—1r/2 . /2
/4 . —1l4
T
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FIG. 1. (Color online) (a) |¥,,,| and (b) arg{¥, ,} for a stable
stationary vortex of topological charge S=2 for coupling C=0.1
(mode i in Table I).

in contrast to the modes e and g for S=1. The stability of the
latter for a focusing nonlinearity, as compared to the mode f,
can be understood from the fact that it favors out-of-phase
oscillations between neighboring sites [41].

For experimental systems where the model (1) is of rel-
evance, like a regular bundle of optic fibers or other nonlin-
ear waveguides or like photonic crystals with optically in-
duced waveguides, it is in principle possible to excite single
sites of the lattice by a focused laser beam. Also in the con-
text of a Bose-Einstein condensate loaded into an optical
lattice [42] a detailed control can be exercised by vacating
unwanted sites through laser-heated evaporation of the con-
densate at these sites. Although the DNLS model is a very
good description for the systems with a strong optical lattice
potential, which is demonstrated by the concurrence between
the phenomenology of the model and a number of experi-
ments [5,23,24,33,34], the observation of some of the solu-
tions presented here will present technical difficulties. This
is, despite the possibility of controlling excitations on indi-
vidual sites, mainly due to the difficulty in experiments to
control the individual phase relations between the sites. Cur-
rent experimental techniques rely on phase masks (vortex
masks) to give a circularly symmetric light beam the desired
vorticity before it is focused on the face of a waveguide array
or a photonic crystal [33-35]. A relevant initial condition in
these circumstances is (compare [33])

f(r, 0) = Ar‘s‘eisee—w(r - rO)Z’ (5)

where S is the vorticity and the circular coordinates are re-
lated to the lattice indices by re'’=n+im for an on-site exci-
tation with unit lattice spacing. To get an off-site excitation a
half integer shift is introduced on the lattice indices. The
parameter A determines the amplitude, w is the inverse width
of the beam ring, and r is the radius of the ring, which in
previous investigations has been set to r,=0 to achieve the
fundamental vortex modes. Indeed, the initial condition (5)
with S=1, A=2, w=1, and r,=0 (see Fig. 2) against a noisy
background for 0.03=<C=0.1 will evolve into a charge one
stationary vortex corresponding to mode b in Table I.

To obtain the stationary solutions of Eq. (1) it is important
that the excited sites, not counting the decaying tail, have the
same amplitude. Since the frequency of oscillation is related
to the intensity of the main excited sites and directly deter-
mined by their value at the anticontinuous limit, a mix of
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FIG. 2. The radial dependence of the initial condition (5) for
two different values of the parameters: S=1, A=2, w=1, ry=0
(solid line) and S=2, A=0.5, w=35, ry=1.5 (dotted line). The
squares ([) indicate the values at sites along a lattice direction and
the circles (@) values along a direction diagonally in the lattice for
unit lattice spacing.

amplitudes will lead to a mix of different frequencies. The
generic case, and the only possibility giving a localized exact
solution as explained in [25,43], is a solution with two in-
commensurate frequencies of oscillation forming a quasi-
periodic excitation. Thus, a ringlike initial condition with

(a) 5 1.0(b) 5

0.5 m g

—0.54p 20 40 ; 60 80 100

FIG. 3. (Color online) The dynamics of the initial condition with
S§=2 in Fig. 2 against a noisy background for C=0.049. (a)
|¥,..(t=0)] and (b) arg{¥,,(t=0)}, where only the phase of the
main excited sites are shown for clarity. As the vortex evolves,
without much change to the initial amplitudes, the vorticity will
change from S=2 in (b) to S=0 in (c) at r=2.6 and to S=-2 in (d)
at r=5.3 and back again. The quasiperiodicity is also clearly seen in
plot (e) of the real parts of the amplitudes at site (=2,0) (solid line)
and site (—1,1) (dotted line), but as can be inferred from plot (f) of
|W_, 0l it is not an exact two-frequency quasiperiodic solution. The
calculations were made on a 21 X 21 lattice with periodic boundary
conditions.
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FIG. 4. (a) The distribution of Floquet multipliers for an exact
quasiperiodic vortex breather with Ay=0.3450 and A,=0.5950 for
C=0.049 showing its linear stability. The system size is 11X 11. (b)
The time evolution of |W_, | for the same solution illustrating the
periodicity of the oscillations with period 7),/2=1/A;=5.2800 as is
expected for an exact solution. Compare this with Fig. 3(f) and note
also that the magnitude of the oscillations differ by about three
orders of magnitude.

larger radius, ro#0 in Eq. (5), which, e.g., would be the
relevant choice to obtain the stable S=2 stationary vortex
discussed above, will generally lead to the excitation of a
quasiperiodic vortex breather. This is illustrated in Fig. 2,
where the resulting amplitudes along a lattice direction and
diagonally in the lattice are marked. In principle, the initial
condition can be chosen so that the main excited sites in the
two directions get the same amplitude, but in practice this is
not feasible. In simulations even a slight deviation of the
amplitudes will lead to quasiperiodicity. The dynamics of the
initial condition in Fig. 2 is illustrated in Fig. 3. The initial
condition will generally not yield an exact two-frequency
quasiperiodic vortex. This can be seen from Fig. 3(f) since
the period of oscillation of |¥, | has no relation to the
change of vorticity in Figs. 3(b)-3(d) with period 7~ 10.6.
However, the dynamics will in the general case stay very
close to an exact solution, the existence of which can be
inferred from its construction from the anticontinuous limit.
As such we may regard the solution as constructed from two
interlaced quadrupoles with different amplitudes—i.e., dif-
ferent incommensurate frequencies A, and A;—at C=0. Due
to the quasiperiodicity, the vortex will not have a well-
defined vorticity, but will instead oscillate between S=2 and
S=-2 with frequency A,=A,—A, which is associated with
the time-dependent phase difference between the two qua-
drupoles. This will also be manifested as a periodically
changing flow of the norm current density (4) in the vortex
ring, as required from Eq. (3) for an intensity N, ,, which is
periodic in time. This phenomenon of “charge flipping” was
numerically observed in [20] for a related system when ap-
plying an amplitude perturbation to a stationary (time-
periodic) vortex with S=1. In the model (1) we conclude that
the effect is due to the existence of exact quasiperiodic
vortex breathers.
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To obtain numerically exact quasiperiodic vortex breath-
ers the method with continuation from the anticontinuous
limit, as described in_ [25,43], is used. Let the excited sites
have magnitudes VA, and VA,, with appropriate relations
between the phases, for C=0. After shifting Eq. (1) to a
frame of reference rotating with frequency A the problem
can be reduced to finding time-periodic solutions with fre-
quency A,=A;—A, for increasingly larger coupling. Nu-
merically this is achieved by integrating the system over one
period and searching for the fixed points of the correspond-
ing map with a Newton method scheme. In addition, linear
stability is simply investigated by standard Floquet analysis,
as described in [25,43], leading to a symplectic eigenvalue
problem for the Floquet multipliers; i.e., u, ,u*, 1/p, and
1/ " will be simultaneous multipliers and linear stability fol-
lows if all multipliers are on the unit circle [39]. This will
for each configuration of excited sites at C=0 give a two-
parameter family of solutions. Taking A,=0.3450 and
A,=0.5950, with sites arranged in a ring and with appropri-
ate phase relations, will lead to a set of solutions closely
resembling the ones created from the initial condition with
S=2 in Fig. 2. As seen in Fig. 4(a) this quasiperiodic vortex
breather will be stable for C=0.049. Using the exact solution
as an initial condition in Eq. (1) will produce a dynamics that
is practically identical to the scenario in Figs. 3(a)-3(e). The
only observable difference is the oscillations in |V, | that
now will be periodic with period T,,/2=1/A,, as illustrated
in Fig. 4(b). From the linear stability analysis of the exact
quasiperiodic solution it is revealed that it is essentially
stable (except for windows of very weak instability associ-
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ated with phonon resonances) up to C=0.061, where a com-
plex instability sets in that will break up the solution. This is
in very good agreement with the dynamical simulations of
the initial condition in Fig. 2, where the vortex breather
will break up and generally form a single quadrupole for
C>0.060. With other choices of the frequencies a qualita-
tively different behavior of the solutions is possible. It is,
e.g., possible to have a nondestructive phonon resonance,
which theoretically occurs at C=(A,—A)/4, before any de-
structive instabilities; i.e., there exist also stable quasiperi-
odic phonobreathers with a small nondecaying tail (cf. [43]).
Further, we have also observed the creation of quasiperiodic
solutions corresponding to a vorticity S=1. This can be
achieved by, e.g., taking the initial condition (5) with A=2,
S=1, w=0.5, and ry=0.

In conclusion, we have demonstrated the existence and
stability of both stationary and quasiperiodic vortex breathers
with topological charge S=2. We further argue that current
experimental techniques are more likely to lead to an obser-
vation of the latter than the former.
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